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ABSTRACT: We study a class of dilatation invariant BPS surface operators in 4-dimensional
N = 4 Super Yang-Mills theory and their holographic duals in type IIB string theory in
AdSs x S°. First we take an example of 1/4 BPS surface operator and study it in detail
from the holographic point of view. The gravity dual of this surface operator is a D3-brane
characterized by a holomorphic submanifold. The supersymmetry and vacuum expectation
value are checked in both the gauge theory side and the gravity side. We also calculate
the correlation functions with the chiral primary operators in both sides and find good
agreement. Next we consider more general dilatation invariant BPS surface operators.
The gravity duals of those operators are proposed.
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1. Introduction

A surface operator in a gauge theory is an operator supported on two-dimensional surface X.
In NV = 4 super Yang-Mills theory, a disorder type surface operator is introduced to give a
gauge theory description to ramifications in the context of the geometric Langlands program
in number theory [f]. The surface operator is characterized by the boundary condition on
the fields in the path integral near a codimension two singularity. As other local or nonlocal
operators, surface operators are useful to understand the AdS/CFT correspondence [f—H].

The surface operator given in [ is half BPS and the singularity is in the form of a
simple pole. The gravity dual of the surface operator can be studied. In [}, the gravity
dual of it has been proposed as a probe D3-brane wrapping AdS; x S' in AdSs x S,
which can be supersymmetric [f, f]. The corresponding type IIB super-gravity solution,
named as bubbling geometry, has been analyzed in []—[]. Some observables related to this
surface operator are calculated in the various pictures [[[(J. The half BPS surface operator
is generalized to the case that the singularity is a higher order pole [I]] and a simple pole
up to a logarithm [[[J]. Other kinds of surface operators are also investigated in [L3-[LF).

One of the most interesting aspects of the surface operator of [[] is the fact that
some of the physical quantities may be compared between the gauge theory side and the
gravity theory side. Usually it is not easy to compare those quantities because the classical
gravity calculation is only valid in large ’t Hooft coupling A regime, while the perturbative
gauge theory calculation is only valid when A is small. However the surface operator has a
parameter 3, and the physical quantities can sometimes be expressed as the power series
in A/3% on the gravity theory side, which for large 3 mimics the perturbative small A
expansion.! This situation is similar to what happens in the plane wave limit in [[[7; the
R-charge J plays a similar role to g in this case.

There are many possible ways of constructing more general surface operators preserving
fewer supercharges. We restrict our attention to operators which are scale-invariant, so the
locus of the singularity is a collection of planes intersecting at a single point. As we shall see,
the allowed singularities may have branches. An objection can be that the configuration
is not well-defined since the boundary condition is not single valued. We show that via an
appropriate gauge transformation, the possible monodromy can be canceled. In the gauge
theory, a surface operator of this kind can be constructed by using homogeneous algebraic
equations. The most general case becomes 1/16 BPS. We propose that the gravity dual of
it is a D3-brane wrapping a holomorphic surface ¥4 in AdSs x S°, where ¥, is defined by
the same homogeneous algebraic equations. We take a 1/4 BPS example to investigate the
preserved symmetries, the vacuum expectation value, and the correlation function with a
chiral primary operator.

The proposed D3-brane dual to the 1/4 BPS surface operator is shown to preserve
1/4 of the super symmetries in type IIB. In the semi-classical limit, we show that the

!This does not mean that they must agree with each other unless the AdS/CFT correspondence is
wrong. There could be “discrepancy” since the order of the limit is different in each side. Actually similar
“discrepancy” happens in the anomalous dimension of large R-charge local operators in the context of the
integrability in the AdS/CFT correspondence [E]



vacuum expectation value of the surface operator is 1 in both sides. In the gauge theory,
we proceed to calculate the correlation function between the surface operator and local
operators. In the gravity, we take the supergravity limit and present the result for all
orders in A\/3? as an integral form. Analytic results of the integration are given the leading
and the next-to-leading order in A\/32. The leading order result coincides with that of the
gauge theory.

The organization of this paper is as follows. In section fl, we construct a specific exam-
ple of the surface operator in the gauge theory. We show that the surface operator is quarter
BPS. In the semi-classical limit, we study the vacuum expectation value of the operator
and correlation functions with CPO’s. In section [J, we propose the gravity dual of this
operator, and then check the preserved super symmetries by kappa symmetry projection
in the embedding space. For the D3-brane solution, we evaluate the vacuum expectation
value and correlation functions with CPO’s. In section |, we consider a generalization of
our example. Section fj is devoted to discussions.

2. An example of 1/4 BPS surface operator in the gauge theory

2.1 Definition of the surface operator by a classical solution

In this section, we will consider a surface operator Oy, of SU(N) N = 4 super Yang-Mills
theory on R* with coordinates (2°,z',22,23), or on C? with coordinates (z',z?). Our
conventions for the gauge theory are collected in appendix [A].

As in [[l], we characterize a surface operator by the boundary condition of bosonic
fields near codimension 2 singularities. Semi-classically the surface operator is given by a
classical solution with these boundary conditions and its quantum fluctuations. Likewise,
any classical solution with a codimension 2 singularity corresponds to a surface operator,
defined by the boundary conditions near the singularity of the classical solution.

In this paper we focus on the classical solutions in which the gauge fields are flat; in a
suitable gauge choice we can set A, = 0 at least locally. The non-trivial field excitations
in the classical solution are the scalar fields. In the 1/2 BPS case [, f]] the solution with
simple pole

1
® ~ 5L (2.1)
is considered. The higher order poles can also be considered [[[1]. Then what happens
when the singularity has branches? That is what we address in this paper.

In order to explain our basic idea and make things explicit, we focus in this section

and next on the classical solution of the type

— (2.2)

We will consider more generic classical solutions in section f]. In particular, other examples
of the 1/4 BPS surface operators are found in section [.3.3. In eq.(R.) we include both z*
and 22 in order to preserve the dilatation symmetry. This dilatation symmetry is useful for
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Figure 1: The patches of the coordinates. We introduce two patches (1) 0 < ¢; < 27, and (2)
—7m < ¢1 < m. They are connected by the gauge transformation with the identity matrix in (a)
0 < ¢1 < 7 and the matrix g in (b) —7 < ¢1 < 0.

Wick rotation as we will explain later. This configuration is singular along the two planes
with z! = 0 as well as 22 = 0. Hence when we consider the surface operator by the path
integral, we impose the boundary condition at both z! = 0 and 22 = 0.

The behavior of the scalar field (R.9) does not look like a consistent configuration
because it is not single valued.? However we can make it a consistent configuration by
introducing the gauge field holonomy as follows. We consider the scalar ®, which is an
N x N matrix, and the gauge fields

5 B
NEZ 2z

where ( is a real positive parameter. These fields are not single valued. For example, the

<I>:diag< 2,0,---,0), A, =0, (2.3)

value of the scalar field has Z, monodromy when z! goes to z'e*™. This monodromy can be
cancelled by the gauge holonomy. Let us introduce two patches of coordinates (2! = r1e?®1)
in order to explain this holonomy (see figure [[).

(1) 0 < ¢1 < 27 (branch cut at ¢1 = 7).
(2) —m < ¢1 < 7 (branch cut at ¢; = 0).

The intersection of these two patches is two disconnected regions: (a) 0 < ¢1 < 7 and (b)
—m < ¢1 < 0. The gauge transformation between these two patches is chosen as follows.
In the region (a), (1) and (2) are trivially identified, namely ®) = &®) A,(}) = A,(f). On
the other hand, in the region (b) they are related by the gauge transformation with the
constant parameter g €SU(N) defined as

g= <igl INO_Q) . (2.4)

2Similar double valued configuration also appears in the conformal vortex loop operator in 3-dimensional

super-conformal Chern-Simons theory [E]



The fields are transformed under the transformation as,
g®Wg™t = —oM) = @), g(Ale) —i0,)g "t = Af?). (2.5)

The eq. (.5) are consistent with A,(}) = A,(E) = 0 because g is a constant. Moreover the
monodromy due to the square root branch can be canceled by this gauge transformation.

Note that the configuration (R.3) satisfies the equation of motion.

We can introduce further gauge holonomy which commute with ® and g. The field con-
figuration (B.J) and the holonomy (2.4) break the gauge symmetry SU(N) to U(1)xSU(N —
2). Therefore we can introduce extra holonomy included in this U(1). In other words, we
can change the gauge transformation (B-4) to go, which includes parameter oy as

ieialdl 0
G = < 0 e—2ial/(N_2)[N_2> ' (2:6)

This parameter a; is an analogue of the parameter « in [IJ. There is also a monodromy
around z? = 0, and the holonomy g, is introduced to cancel this monodromy. These two
parameters (aq, ) fix the holonomy globally.?

We can also introduce the two dimensional theta angle as the similar way as in [ by

e inn [ Fluw] . 27)

where F'|y(;) are the unbroken U(1) part of the field strength. There are also similar

inserting the operator

parameter 7o at 22 = 0.

We can also introduce the parameter ~ as in [III], by making 8 complex valued. However,
to avoid undue complications, we choose § as a real positive number. The phase can be
restored to nontrivial value at any stage of our discussion.

Instead of introducing two patches and a gauge transformation between them, we can

—
2

choose the gauge field A to be nontrivial, A = =120 ga,dp;. In this frame, the

scalar field takes the form

o (z1Z2)—1/2036i01(¢1+¢2)/2 0
B 0 On—2)’

and there is no monodromy. However we will not use this frame in the rest of this paper
since this frame is not convenient to see the supersymmetry.

Let us consider how to do the path-integral around this multi-valued configuration. In
string theory, a similar situation occurs when one consider the twisted sector of strings in
the presence of orbifolds. The boundary condition of the fluctuation 6® can be chosen by
the following

(® + 6®) (¢ + 27) = g, (P +6®) (¢3)gs', (not summed over i), (2.8)

3This is so simple in this special example because the monodromy group is abelian. It is also worth to
note that the fundamental group of the space, obtained by removing two planes z' = 0 and 22 = 0 from
C?, is an abelian group Z x Z. In the more general case, the problem seems to be more involved.



where @ is given in (R.3), a solution of the equation of motion. Expand J® as

0B =) Tadd",
A

where Ty are the basis of the N x N matrix, which diagonalize the adjoint g,, action,
namely g,, T“‘g;i1 = exp(2mi&;(A))T4 with some numbers &;(A). §&4 can be expanded to
the Fourier series as 6®4 = >y maez €XP[1 D (i + &(A))qbi]hﬁlm and the measure of the
path-integral can be written as DO® = [] Anyms thl‘hm. The other fields are also treated
as the same way.

The configuration (R.3) preserves the dilatation symmetry. This dilatation symmetry

acts on the scalar field with a real positive parameter « as
(21,22) = (21, 25) = (az1,022),  ®(21,2%) = ®'(2], 25) = a7 '®(2', 2%). (2.9)

Under the dilatation symmetry, the configuration (R.3) is invariant, i.e. ®'(z1,29) =
®(21,22). The dilatation symmetry is useful to write an analogous configuration in
Lorentzian signature. By a Weyl transformation, flat Euclidean space R* can be mapped
into R x S3. Dilatation transformations in R* are mapped to time translations in R x S3, so
in this frame, the configuration (2.3) is time independent. Thus we can safely perform the
Wick rotation of R direction and get a static configuration of N’ =4 SYM in Ryiime x S°.
This fact is useful to find a gravity counterpart in Lorentzian global AdSs x S°.

2.2 Supersymmetry in the gauge theory

The surface operator defined in (R.3) preserves 1/4 of the supersymmetry and the super-
conformal symmetry. To see this, we need to consider the variation of the fermion ) of
N = 4 SYM, given in (A.4). For the background field as in (.J), the variation can be
written conveniently if we use the complex coordinates:

5 = = (8; 87 + 0,077 )e(2) — (B7° + D7P)er, (2.10)

N =

where @ is the hermitian conjugation of ®. €(z) combines the parameters of super-Poincaré
transformations €y and of super-conformal transformations €1, each of which is a 16 com-
ponent spinor, as follows

€(z) =€ + nij(zivj + viij)el. (2.11)
The variation of the fermion (R.10) vanishes, if we impose the following condition on
€5
e =716 = "6 =" 6 =0, (1=0,1), (2.12)
or equivalently
(1+TM5)¢; = (14 T8¢, = 0. (2.13)

In the derivation of this condition, we use the relation

219;® = —®,



which holds because ® is a degree (—1) homogeneous function of 2!, 22.

The bosonic unbroken symmetries for the quarter BPS surface operator (R.3)) are as
follows. The surface operator in consideration (R.3) preserves the dilatation symmetry R
of the 4-dimensional Euclidean conformal symmetry SO(1,5). It is also invariant under an
SO(4) subgroup of the R-symmetry SO(6). It breaks spacetime rotational symmetry, while
it preserves SO(2),, and SO(2), symmetry which are the combinations of the spacetime
rotation and R-rotation; SO(2), is the diagonal part of SO(2)rxSO(2)p1xSO(2)23, while
SO(2) is the difference of SO(2)g; and SO(2)23. The super charge in the (4,4) represen-
tation of SO(4,2)xSO(6) is reduced to (2,1) and (1,2) of the SU(2)xSU(2) ~SO(4).

2.3 Vacuum expectation value

In this section, we will consider the expectation value of the quarter BPS surface operator,
Osy,, defined in (R-J). We expect this expectation value to be 1 due to the supersymmetry.
The expectation value is defined as the path integral with the boundary condition at the
singularity. This path integral is approximated by the classical SYM action:

©os)= [ [DADYDYeS = exp(~S)]s.
boundary condition
The relevant part of N'=4 SYM action in (A]) is
1 21922, 4] 5& 1 A T
S = @/d zrd°z n]T‘r(&(I)&j@—l—@;(I)@i(I)).
In the presence of the surface operator as in (R.3), it leads to the following:

2
S‘E /d221d222 (‘21’2_’_’22‘2) ‘2122‘—3'

T
Let us use the polar coordinate, 2 = r;¢’® and regulate r; € (g, 00) for i = 1,2. Then

2

Sl = 5—2 [ / dridondén+ | d?‘zd(ﬁldqﬁz%] . (2.14)

Our conventions for the measure are given in (A.5). As in [[[], we add a boundary term
to impose the appropriate boundary condition. Without additional boundary terms, the
variation of the action gives

/ d*22denr (5@1@ + 5éi@>
ri=ro (97‘1 (97‘1

- -0
21 D+ 50— ) |. (2.1
+ /mzm d*z d¢27‘2 <5 87’2 + 6 P >] ( 5)

1
(55 D) —2—g2TI'

T2

This surface term would impose the boundary conditions r10®/9ry = 0 at r; = ry and
r90®/Ory = 0 at ro = 1o, which are not satisfied by the solution (R.3). In order to get rid
of this additional condition, we add the following boundary term to the action.

Sp = —%Tr U d*22dp (BP) +/
4g r1=ro

ro=rQ

d*z'deps ((I)i))] :



Adding this boundary term makes the boundary conditions 2r10®/9r1 + ® =0 at 11 = rg
and 2r90®/0ry + ® = 0 at ro = 1o, which are actually satisfied by the solution (2.3).
The total action is summed up to be zero, (S + Sp)|s; = 0, thus

(Os) =1. (2.16)

As considered in [[[9- R3], the surface operator may have conformal anomalies since the
surface operator is defined on an even dimensional submanifold. To compute the anomaly,
we need to evaluate the action of a surface operator defined on ¥ with non-trivial curvature
or Weyl tensor. This will be an interesting future work.

2.4 Correlation functions with chiral primary operators

The correlation function of a local operator O(() inserted at the point z™ = (™ and the
surface operator Oy, in the semi-classical limit is given by the classical value of the operator
in the classical solution.

(O - O(Q)) 1

<OZ > <OZ > /boundary condition

[DADY$Dg] O(¢) e = O] (¢). (2.17)

The correlation function of the surface operator (2.J) and a chiral primary operators is
non-trivial when the CPO is invariant under SO(4) subgroup of SO(6) R-symmetry. We
use the notation of the SO(4) invariant CPO as given in [4, [L[{]

(87T2)A/2
Oak =77 7=
PLVERVIN

A is the conformal dimension. k is the charge under SO(2) of SO(2) x SO(4) subgroup
of R-symmetry, k = —A, —A +2,--- A, We give the definition of C*»#4 in (E.J) and
review the relevant aspects of the spherical harmonics in appendix [E.]. The relevant part

02,71;. 7iATr(¢i1 e ¢iA)’ (2'18)

for the correlation function with the surface operator in (2.3),

(8w%)A/2 (A+k)/25 (A—k) /2
OA,k = WC‘A,ICTI'[(I) P —I-CI)Q(...) —I-CI)g(...)]sym, (2.19)

where Cp j is given in (E.d), and []sym means all the products inside are totally sym-
metrized. Using ® = ®3 = 0 the correlation function evaluated by (R.17) is

O 7 $)-O {2)A/2 A
< A]zé; .- (AA/;ﬂC“|<1<2|<A—£/2<<1<2>k/2 L+ 0%, 220

Note that the correlation function vanishes for odd A, since the two diagonal components
inside the trace have the opposite sign.

The correlation function of the Oy, in (R.J) with a Wilson line or the stress-energy
tensor can be interesting physical quantities to investigate, as for the half BPS surface
operator in [[[(]. However we will not pursue the issue here.



3. Gravity dual of the 1/4 BPS surface operator

3.1 Probe D3-brane as the gravity dual of the surface operator

Let us now consider the holographic dual of the surface operator defined in (R.3). The
following complex coordinate system for AdSs x S° is convenient for this purpose:

3 2
ds” — ﬁ (Z der P+ (X eP) S |dzm|2> . (3.1)
a a=1 a m=1

We can relate it to the global coordinates of AdSs x S° as follows:

3
w? = e 7 csc pug exp(ib,), Zuz =1,

a=1
2
2™ = e” cos priy, exp(idm), Z r2 =1,
m=1
Then the metric (B.1]) becomes

ds® =

1
- (dr? + dp* + cos® pd3) + dQZ,

where dQ% and dQ% are the metrics of the unit S® and the unit S° expressed as
A0 = > (dr} +r2del),  dQE= D (dul +uld6}). (3.2)
m=1,2 a=1,2,3

To be supersymmetric, we have the following 5 form field strength in the background:
Fs5 = 4(vol(AdSs) + vol(S®)). (3.3)

In this paper we choose the unit of length such that the radius of AdSs is 1, namely
4rgsNo/?> = 1. In these units o/ = 1/v/ X = 1/\/4wg,N, and the D3-brane tension Tps is

expressed as
1 N
Tra = ——  — 3.4
b3 (2m)3gsa? 2w (34)
We propose that a probe D3-brane, wrapping a 4 dimensional subspace ¥4 defined by

the following holomorphic equations ,
A2W)? - k2=0, Wwr=uw?=0, (3.5)

is dual to the surface operator in (R.3). Here & is a parameter related to 8. The precise
relation between [ and k are determined later in eq. (B.29), according to the correlation
function with the chiral primary operators.

The parameters (ay,a9,n1,72) are mapped to the gauge field A on the D3-brane and
its magnetic dual A as

A=aidg + asdds, A =mdey + nadeo. (3.6)

Note that the configuration (B.§) is 7 independent, i.e. static. Thus we can Wick rotate

the configuration easily by replacing 7 = it and consider the same static configuration in

the Lorentzian signature. It is convenient to consider the Lorentzian signature especially
when checking the supersymmetry, which we do in the next subsection.



3.2 Supersymmetry of the probe brane

To check the preserved supersymmetry of the probe D-brane, we can use the kappa symme-
try projection [5- B0, [f]. To this end, it is advantageous to use a 12 dimensional embedding
space Ch? x C3 with coordinates (Z°, 21, Z2, W', W2 W3), as in [B1, BZ. The reason is
that the Killing spinor of the embedding space is constant Dirac spinor with 64 complex
components, while the Killing spinor of the physical space depends on the space-time. We
can get the 10 dimensional physical space AdSs x S° using the constraints:

—ZP 2P+ Z7P =1, Y (WP =1 (3.7)
A=1,2,3

Reduction of the constant Killing spinor in the embedding space to the one in the physical
space is done by the following conditions,

8Y00711722€ = €, 8V33V41V55€ = €, (3.8)

where 74 are defined in ([C-1)).

We review the relevant aspects of the kappa symmetry projection and the conventions
for the embedding space in appendix [B and appendix [J. General discussions about super-
symmetric branes in AdSs x S° can be found in [{].

We can use an embedding map as follows:

7% = csc pe’t,
Z™ = cot prme'®™ = (e sin ,0)_1 2", (m=1,2), (3.9)
W = uge = et sinpw?, (a=1,2,3),

The D3-brane worldvolume ¥4 defined by (B.5) is an intersection of the physical space and
a six dimensional holomorphic space g in the embedding space defined by:

Z'Z2(WhHY? — k2 =0, W?2=W3=0. (3.10)

Note that we can let eq. (B.10) be the same form of eq. (B-5) due to our embedding map (B.9).

Two vectors E,,, E,, in TY¢\TY, are projections of the two normal vectors of AdSs5 x
5% in the embedding space on the TYg. One of these vectors is time-like and the other is
space-like. We will use r1 as a time-like direction.

Since T3¢ is closed under a complex structure I, given as I - aZLA = 'aZiA and [ - % =
—i% , I - E,, are in T'>4. We call these vectors Ey, ;. We can linearly combine Ejy, E;

to form null vectors F1. There leave two linearly independent vectors in T34, which are
orthogonal to Ey and closed under I. The holomorphic/anti-holomorphic part of these
vectors are defined to be F,, Fz. From the construction, the followings hold:

Bl =0, nupElEE =0, napE{EY =B EE =0. (3.11)

z

We normalize the vectors as:

_ 1 —_ —_
WABE?Eg =Mz = 3’ UABEQL-‘E—B = UABEéEB = (3.12)

= =

— 10 —



Using eqs.(B.11),(B-12), the projection operator (B.1) along the D3-brane can be written
in the following form:

. 5 5 1 ) 1
r =i (B8 + Bp) (e + B0) - 3 ) (BAEPvaw - 5). (319
As shown in [@], the condition for the preserved supersymmetry of a D3-brane in the
embedding space becomes

"™ e = ie, (3.14)

where I is the projection operator along the D3-brane, for our case (B.13).

Let us now consider the holographic dual of the surface operator in (P.J). We will use
(Z3,2%,7°) = (W', W2, W?3). For the holomorphic space ¢ defined by (B.1(), the tangent
vectors are vg = Z%0, v1 = (2181 + 720, — 2383), vy = (2181 - Z282) and their complex
conjugates. The vector in T ((CL2 X (Cl) \T%g is vt = %232281 + %232162 + Z17205. To
project the normal vectors of AdS5 x S° on TYg, we note that on Mg,

)

421222 Zl2_ Z22 4212223
Zoﬁo+2181+2282:v0+ ’ > ’Ul—i-‘ ’ V’ ‘Ug—i- > vt

|Zl|2—|—|Z2|2 |Zl|2_|Z2|2 4212223 N
— » V1 + » v + > v

7305 =

)

where v = 4|21 222 + | Z'|? + | Z?|2. We project out v then linearly recombine the result
to get a convenient form of E, , E,,. We choose

/|Zl|2—|—|Z2|2 |Zl|2—|Z2|2
ET’1 = f Vg + mvg +c.c
> ‘Zl‘2+’Z2’2 ‘21’2_’22‘2 N
=\ |\ V1 — 575 55 Y c.Cc| .
n =Y v ANV

We can now construct tangent vectors satisfying (B.11]), (B.19) as follows:

1 112 2|2 02 .
Ez:ZOW((|Z| — 1220 + |2°Pv),  E: = EX,
1
Ei:§(iI'Er1+I'Er2)-

From the construction, E4ys = $(£E4 + Ef,;)’yA,Eﬁ’m = —%(iEé + Eé)’yg. Due
to the orthogonality of E,, and F,, , the relations {Ef,i’yA, Ef;’yg} = {Ef,ilfyg, Ef;’yg} =0
hold. T is given as '™ = —T',,, = —(E;fi’yA + Ef;’yg). Using these, the projection (B.14)
can be written as

I Te = —2i[Efva, BavallER e, ESvEIES EPvape. (3.15)
Let us impose the following conditions on the Killing spinor e,

TTE = V22€ = Y33€. (3.16)

It implies that vi53¢ = v13€ = v3¢ = 0, since y137717 = —V13%23 = —%’ylg , ete. It also implies
that vyype = %e,’y@e = 0, when combined with the reduction of the spinor (B.§). Under the
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imposition (B.14), the right hand side of (B.15) is reduced to ie, being equivalent to the
condition in (B.14). It shows that the probe D-brane preserves 1/4 of the supersymmetry.

Our construction can be regarded as a special case of [BZ], in which a holomorphic
space defined by three holomorphic homogeneous functions f,(Z%, Z1, Z2, W1, W2, W3) for
k =1,2,3, when Z!,W? are assigned weights +1, —1, has been considered. The probe D3-
brane wrapping this holomorphic space has been shown to preserve 1/16 of supersymmetry.
In our case, the % vector in AdS space is tangential to the D-brane, thus the transverse

velocity v vanishes.

3.3 Vacuum expectation value from D3-brane action

At the semi-classical level, we evaluate the expectation value of a surface operator by
(O5) = e~ D3, (3.17)

where Sps is on-shell action of the probe D3-brane corresponding to the surface operator.
This holds in the large N limit (V> 1) and the large t'Hooft coupling limit,

A> 1. (3.18)

The action of the D3-brane can be expressed in terms of of DBI action and Wess-
Zumino term,

Sps = Sppr — Swz, Sppr=1Tp3 / d*¢\/|det Grnl, Swz=Tps | Cu
P
&M are the world-volume coordinates, and G, is the induced metric on the world-volume.
C, is the R-R four form of which field strength is given is (B.3). Tps is the tension of the

D3-brane (see eq. (B-4)).
Let us consider the probe D3-brane wrapping X4 defined by (B.5). We will use complex

coordinates in AdSs x S! with the metric:*

d 2
ds? = o2 3 |dzm? 4 12
m=1,2 ‘w’

We choose the gauge of the R-R four form as

|W|4 13172 322
Cy = sz dz dz*dz".

We sometimes use polar coordinates r;e'® = 2*, w = y~'e’?. @ is the angle of S in S°.
The definition of y is to restore the Poincaré metric of AdSs5 as

1
ds? s, = 7 dy? + Y (dr™ +r2dgl,)
m=1,2

. . . 5 . . . . . .
4The other directions in S° are irrelevant to our discussion in this subsection
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1

We choose 2!, 22 as the world volume coordinates. The transverse coordinate w is a holo-

morphic function of 2!, 22. The induced metric is

9 1

ds? , = e Z (lw|* + |Omw|?)|dz™? + Oywdswdz' dZ? + dywdrwdz*dz"

m=1,2
The evaluation of the action for this solution is given as

Tps Tps
Sppr =~ d*z (Jw* + [O1w]? + |0awl®) ,  Swz = e d*z|w|,
where the measure is defined by [d*z = [ |dz'dz dz2dz?| = 4 [ diz.
We need to add a boundary action, as in the gauge theory, to make the variation of
the action well-defined. The surface term which arises from the variation of the action is

05 = % [d*z > m=12 (Om (0wOm@) + O, (6wdyw)). Recall that the solutions of (B.H) are

K
V12

For the solution, we can cancel the surface term by the following boundary action:

Sp = Tps /d222d¢1drli\w’2+/d221d¢2drzi“”’2 :
8 87‘1 8T2

w(zt 2?) =+

(3.19)

The total on-shell action of the probe D3-brane vanishes, (Sppr + Sp) — Swz = 0. The
expectation value of the surface operator in the semi-classical limit is evaluated to be 1,
which coincides with the result of the gauge theory (2.16).

3.4 Correlation functions with chiral primary operators in the gravity side

Let us now consider correlation functions of the surface operator with chiral primary opera-
tors. Asin [I(], we will use the GKPW prescription [B, f]] to compute the one point function
of chiral primary operators in the presence of the surface operator. We use the source

5= [ 465059, (320)

where s(¢,€) is the source at the boundary at a position of (™. Let (¢',¢?) be
(d1e*1, dyei?2). Q of interest is given as the great circle of S°, s(¢, Q) = Dk C’A,kei‘gsoA’k(g),
where Cx i, is a constant defined by the SO(4) invariant spherical harmonic function of S5

in (E.JJ). G(y,2;¢) is the boundary-bulk propagator of a scalar field s in AdSs with the
c(A)y?

(y2+zm:1,2 |Zm_<m‘2)

A -

equation of motion V,V#s = A(A—4)s, and is given by G(y, 2; () =

¢(A) is normalized as ¢(A) = 2275% 9.

The action of the linearized fluctuation of the D3-brane is

T
Sppr = 5> [ A€Vt GG (9 X 0, X il + 0, X0, X hSp),

3.21
Swz =1Tp3 / at®s] 2
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where we use the notations for the fluctuation of fields, hf}fs ,hgﬁ, ﬁ,ﬂifg in [0, B3, B4].
We use p, v indices for AdSs and «, 3 for S°. We can substitute the fluctuation with the
source by using the following solution, given in [B3, B4]:
6
hﬁgs = _ggUVAS +
hgﬁ = 2903As,

Quvpoe = —4vy gAdSE,quonvnsy

where V(,V,y is the symmetric traceless part of V,V,. The g,.,gas are the space-time

4
Ar1Y Vs
(3.22)

metric while G, is the induced one. To get the one point function of a CPO Oj i, we
take the functional derivative of Sp3 = Sppr — Swz with respect to SA k(()

Let us now consider the quarter BPS D3-brane described by w(z!,22) = r/Vz122
in (B-19). The solution can be written as y(r1,72) = \/T172/k, 0 = —3(¢1 + ¢2) where 0 is
the argument of w. The linearized DBI action in (B.21]) can be written as

T, Dow|? 0
SpEBI :%/d‘*zyw\z ((1 + | ’2‘4‘ Yhip + (1 4+ | ‘i}’ wp’ Yhze + (|O1w]? + yagw\Q)hW>
T = 1 = =
+ % / d4z<|w|2 > Omwhine + On@hom) — o (D1wd50hy + 82w81@h21)>,
m=1,2
(3.23)
where hg, = (hAdS + 1 hS y), etc.  We now substitute the fluctuations with
the source, using (B.22). The Wess-Zumino term becomes Syz = —Tpgfd4zy_5
(Vy — g—gv"l - g—gvm) s, where s is the source in (B.20). The final result is
A—k A4k
S w T (2)o 7 () [ Omw(2)|?
———— = —2ATp3¢(A)C d* 3.24
55 (0) pacls) A”f/ : LA+ weE 82
L= )" |2 =P+ w2 (3.25)
m=1,2
We will evaluate this integral in the large s limit
K> 1. (3.26)

In this limit, the integration is simplified since the integrand in (B.:24) becomes a delta
function supported at 2™ = (™. The limit (B.2() corresponds to the case that the slope
of D3-brane approaching the boundary of AdSs becomes small, which can be seen from a
rewritten solution in Poincaré metric, y(r1,72) = n_lm . In the leading order of x, we
can replace w(z), Opw(z) with w(¢), Imw(C).

Here one should be careful because the coordinates (z!,2?) € C? do not cover the
whole D3-brane worldvolume, namely the function w(z) is double valued. Thus one needs
to extend it to two C?’s as one usually does in the Riemann surfaces. As a result, 2™ = (™
is actually two points on the D3-brane worldvolume: y = k= '\/d1dz with

1 1
O=—5(@1+dh), or  O=—5(d+dh+2m) (3.27)
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The result is the sum of the contributions from these two points. If we replace w(z), Opw(z)
with these values and use the formula (E.4), the integration (B.24) becomes
(Oak-Ox) 282 KA

O0g) VA Ca (didg)A/?

This result coincide with the result in the gauge theory(R.20) if we identify the parameter
k and § by

eTHROITOR)/2(1 4 (—1)B). (3.28)

2B

K= W

To proceed to the next-to-leading order in k, we expand fields near z = (. Let us
define v™ = 2™ — (™, then w(z) = w(({) +v"0mw({) + - - -. Change the integration variable
from z™ to v™. The contribution from the linear order in v vanishes, which can be shown

(3.29)

by the transformation v — —v™. At the quadratic order in v, the integral of the form
f d4v”7z—}jn vanishes by eq. (E.J). Thus, the first nontrivial term at the next order comes

va)’!L

from the integral of the form [ d'v Ta
It is also useful to note that ("J,w(() = —w((),("OmOw(() = —20,w(¢). The
integration (B.24) is proportional to

I N I

where ¢ = v"9pw(C)/w(¢) , L = L(w(¢),v). We expand L(w(z),v) as L(w(z),v) =
L+ |w|™2(=q— G+ qG+---). The evaluation of the above leads to:

(Oak-Os) /4 o A?—k? (d} 4 d3
on U ey Uas )T (330)

where Iél/ " is the leading order result given in (B.2§).

4. General dilatation invariant less BPS surface operator

In this paper we mainly consider the 1/4 BPS surface operator of the form (B.3). Actually in
the gauge theory it can be generalized to those defined by a set of homogeneous algebraic
equations. In this section we consider these rather general surface operators and their
gravity duals.

4.1 General less BPS surface operators in the gauge theory

In order to define surface operators by the boundary condition in the path integral, let us
consider classical solutions with singularities as done in section P and [fl].
Consider the three algebraic equations for x%, a = 1,2, 3,

fiizh 2 X% X7
f2(zl7 Z27X17 X27X3)
f3(z1 2 X% xP)

0,
0, (4.1)
0,
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where f,, (p = 1,2,3), are polynomial of x’s with degree m; whose coefficients are
holomorphic functions of z’s. We also require that f, are homogeneous with weights
(+1) for z and (—1) for x. For fixed z, there are n = mjyngns solutions denoted by
(X%i)(z),X%i)(z),xi()’i)(z)) i = 1,...,n. Note that X?Z-)(Z) are locally holomorphic degree
(—1) homogeneous function of z. Consider a configuration of the complex scalar fields

¢, = diag(x%l)(z),--- ,X@)(z),o,--- ,0),
%1)(2)7”' 7X?n)(z)707'” 70)7 (42)
cp3 = dla‘g(X(l)(Z)7 7X?n)(z)707'” 70)

This configuration has singularities and monodromies around those singularities. Since the
monodromies are permutations of the roots, the monodromy group M is a subgroup of
the symmetric group Sy, so a subgroup of SU(n) and SU(N). Therefore, the monodromy
around a singularity can be cancelled by introducing appropriate gauge holonomy around
the singularity as we did in section B.J. As a result, the configuration (f£3) with the
appropriate gauge holonomy is a well-defined configuration. Moreover this configuration
with A, = 0 is a solution of the equations of motion.

The scalar field configuration ([.2) and the holonomy break the gauge group SU(N) to
U(1)xSU(N —n) in the most typical case. Therefore one can introduce further holonomy in
this remaining U(1) around singularities. Naively this extra holonomy is parameterized by
m parameters aq, ..., Q;,, where m is the number of singularities. More precisely speaking,
the problem is to classify the flat connections which satisfy the conditions

1. The holonomy group commutes with U(1)xSU(N — n).

2. The adjoint action of the holonomy to the scalar field configuration (.3) cancels the
monodromy.

This problem seems to be a rather non-trivial one and we will not pursue it any more in
this paper. One can also introduce the theta angles for the remaining U(1) gauge fields on
the singularities. Naively it is parameterized by m parameters 7y, ..., 7m,.

We define the surface operator by the path-integral with the boundary condition at
the singularities such that the fields have the same singularity as the configuration ([L.9)
including the holonomy.

This operator preserves dilatation symmetry (R.9) because ®,(z) are homogeneous
degree (—1) functions of 2. Thus we can identify the radial direction as the time and per-
form the Wick rotation. We limit ourselves to these dilatation invariant surface operators
in this paper.

This operator in general preserves 1/16 of the supersymmetry. This can be seen as
follows. The fermion variation in the background ([.2) becomes

1 - - L — _ N
o= [5(8;%’% 2 1 9,77 2)e(2) — (Bay? T2 + Doy e | | (4.3)
a=1,2,3
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where €(z) is defined as (R.11). The variation ([.J) vanishes if one requires the conditions
for the parameters €;, j = 1,2

Y =71 = vyl =yl =10 =41 =0,

. (4.4)
e =43¢, = 2yle; = 2le) = 420 = 420 = 0.
Actually, this condition ([£.4) is equivalent to the condition
—e; = [O45¢, — [O167¢, _ POI80.. _ 12345, (4.5)

Hence one can see that 1/16 of the supersymmetry and 1/16 of the super-conformal sym-
metry are preserved by the surface operator ([L.9).

4.2 Gravity dual of 1/16 BPS surface operators

Here let us consider the gravity dual of the surface operator defined in eq.(f£9).
We propose that the gravity dual of the surface operator characterized by (f.3) will be
a D3-brane wrapping a holomorphic sub-space 34 defined by three holomorphic equations

VA

o (4.6)

fa(zh, 2%, pot, o, po®) =0, (a=1,2,3), =
Here we use the coordinates of eq.(B.1). As we will see, this reproduces the 1/2 BPS case
in [, fil, f] and the 1/4 BPS case in section P and section [

To see the supersymmetry it is convenient to go to Lorentzian signature and 12 di-
mensional notation of appendix [J. The 4-dimensional sub-space ([L.f) is expressed as the
intersection of AdSs x S° and the 6-dimensional sub-manifold ¥ in 12 dimensions. This
Y is described by the algebraic equation

fa(ZY 22, )Wy W2 yW3) =0, (a=1,2,3). (4.7)

Actually the supersymmetry of this class of D3-brane is checked by Kim and Lee [BJ).°
They have shown that in general it preserves at least 1/16 of the supersymmetry.
4.3 Examples

In general this surface operator preserves 1/16 of the supersymmetry. However in some
particular cases, this surface operator preserves larger amount of supersymmetry. In this
subsection we explain some examples of 1/2, 1/4, and 1/8 BPS cases.

4.3.1 1/2 BPS surface operators

As an example, this surface operator becomes a 1/2 BPS surface operator when the func-

tions fp, (p=1,2,3) become

flzfl(zl7xl)7 f2:X27 f3:X3' (48)

5They consider in @] more general time dependent configurations of D3-brane and show that they
preserve 1/16 of the supersymmetry.

— 17 —



Since f; is homogeneous function of (2!, x!) when they are assigned the weights (+1, —1),
f1 = 0 has n = ny roots of the form

XGi) = % (4.9)
where 3;, (i = 1,...,n) are constants. As a result one finds that the operator ([.3) with
fp of eq.(f.§) are the 1/2 BPS operators discussed in [, [, [[d]. The supersymmetry for
this operator is considered in [fl, fj—[[0 in both gauge theory side and supergravity side.
It is found that this operator is actually 1/2 BPS. We explain the supersymmetry of the
probe D3-brane picture in appendix D.] from the 12-dimensional point of view.

4.3.2 1/4 BPS surface operators

The general surface operator becomes a 1/4 BPS surface operator when f, are written as
fl :fl(zlvzzvxl)v f2 :X27 f3:X3' (410)

A more special examples is

fi=g(L 22 0N =8 fo=xE fi=X,

where g(z',2?) is a degree n homogeneous polynomial of z',2%2. One can factorize this

polynomial and write it as g(z', 22) = [\, (a;z' + b;2?) for constants a;, b;. This operator

is localized at planes a;z' + b;z> = 0, (i = 1,...,n), which are intersecting at a point
1 2

zr=2z*=0.

Another example is that fi(z!, 22, x!) is a homogeneous function when z!

22 ! are
assigned weights (1,1, —1) and (A4, B,0). For the case, f; can be expressed as

B A —Bky +k Akq—k
A0 = Y a(() 8 () a2 (%) A
l

for some constant coefficients ¢;. Solving f1(z!, 2%, x!) = 0 amounts to solving an algebraic
B A
equation of one variable, (2!)”4-5 (22)a-5 y!. Thus the solution is in the form of
1 1 _B_ 2 __A_
Xy ~ (2 )2 B (27) 7B,
The 1/4 BPS surface operator which we considered in section | and section [ is a
special example that

fi=2"22(")? - 32, fo=x% f3=x> (4.11)

The supersymmetry of the operators with (f.1() can be seen just the same way as
done in section P-3 and section B2

The correlation function with chiral primary operators can also be calculated in the
similar way to section P-4 and section B.4. In the gauge theory side, we can just insert the
classical solution (f.2) with (f.10) into the form (R.19) and we get

(Oak(Q)-Os)  (872)A/2 n O e T
AIZ(92> - :)\A/2\/ZCAJ€;(X%¢)(C)> 2 (X%MC)) 2. (4.12)
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On the other hand, in the gravity side, eq.(B.24) is still valid for the D3-brane of ([£)
with (£.10). We consider the same limit as in section B.4 and evaluate the integral, taking
care of the branches with w!(z) = u‘lxb)(z). The leading term become

(Oar(Q)-Os) <
o e

=1 (4.13)
2A/2 Atk Ak

R A R

This gravity result (.13) completely agrees with the gauge theory result (.1J). The next-
to-leading order can be also done as before. Including this correction term, the correlation
function calculated in the gravity side become

A2 o k2
A=Dh{,©

<0A,k(C)>' Os) _ S |1 s
i=1

(O,

‘4(‘81)(%2‘)(()‘2 + @X%@(C)\z)] - (4.14)

Because p? = \/(2m)2, this series is a positive power expansion in A\. Thus we may expect
that this result can be compared to the perturbative gauge theory.

4.3.3 1/8 BPS surface operators I

In this paper, we mainly consider less BPS surface operators with monodromy. There are
less BPS surface operators which have no monodromy and a singularity at z' = 0, with
P, ~ 1/,

Let us take the functions f’s as z? independent.

fi=AEN NG, f2 = fa(zh xh XA ), 3= 0. (4.15)

The solutions X‘(Ii)(zl) of the algebraic equation {f, = 0} are degree 1 functions of z?,
and therefore they have the form X?Z.)(zl) = B4./7' with some constants 3,,;. Thus the
classical configuration for this class of operator is parameterized by 3 x n complex numbers
Baji, (a=1,2,3, i=1,...,n) and written as

1 .
d, = I diag(Ba,1;- -, Bam,0,...,0). (4.16)

The background filed as in ([f.1) preserves 1/8 of supersymmetry and super-conformal
symmetry. The imposition of the following conditions on e;,

Yvie = v yte = Y6 = vda = vyta = v10e =0, (i=0,1),
or equivalently
—€j = F01456i — FOlG?Ei — F0189€Z’, (417)

makes the super-conformal transformation (R.10) vanish. So this operator preserves 4
supersymmetries.
To get a 1/4 BPS surface operator, we let f3(z!,x3) = x3. In that case, —¢; =

[OM5¢, = T0167¢; suffices to have d1 = 0 for the corresponding surface operator.
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For the less BPS surface operators in this section, the evaluation of the classical action
will be a linear sum of that of the half BPS surface operators , which is shown to vanish.
Thus the vacuum expectation value of the operators will be also 1.

The gravity dual of this operator is given by n disconnected D3-brane sheets

_ 5@,2’ \/X

qul’ MZ%’

i=1,...,n. (4.18)

Wa

Actually each sheet is a 1/2 BPS configuration, and the preserved supersymmetry can be
seen as in appendix [D.J. The preserved supersymmetry by i-th sheet is

gl Z Ba,iYaa€ = Z BaiVa+2e = 0. (4.19)
a=1,2,3 a=1,2,3
Thus if we impose
Y1Ya€ = YiVa€ = 0, a=3,4,5, (4.20)

then the SUSY variation vanishes. As a result one can see that 1/8 of the supersymmetry
is preserved.

4.3.4 1/8 BPS surface operators II
There is another class of 1/8 BPS surface operators expressed by the following equations.
flzfl(z17z27X17X2)7 fg:f1(21,22,X1,X2), f3:X3' (421)
The preserved supersymmetry is expressed by
0 =76 =% = v'v'e = v've = e = e = vyl = Prte,  (4.22)
or equivalently
—¢; = 0M5¢, — POI67¢, — 2367, (4.23)
Therefore this operator ({.21]) is actually 1/8 BPS.

When the equations take the special form as

fl :fl(Z17X1)7 f2:f1(22,X2), f3:X37 (424)

then this operator preserves 1/4 of the supersymmetry expressed as

—€; = FOMSEZ' = F2367€i. (4'25)

5. Discussion

In this paper, we discuss a class of BPS surface operators. These operators are defined by a
set of algebraic equations. These operators preserve in general 1/16 of the supersymmetries.
We propose the holographic dual of those operators as configurations of probe D3-branes.
We checked the supersymmetry in both the gauge theory side and the gravity side.

We took a special example of a 1/4 BPS surface operator (B.J) and studied it in more
detail. We calculated the expectation value of this operator in both the gauge theory side
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and the gravity side, and found it is 1 in both calculation. We also considered the corre-
lation functions with local chiral operators. In the leading order at A/3% — 0, both the
calculations completely agree with each other (see (P-20) and (B.2§)). We also calculated
next-to-leading order contribution in the gravity side and got the result (B.3(). This cor-
rection, unlike the 1/2 BPS case [[(], includes space-time position dependence. This is
because the spacetime dependence is not completely fixed the remaining spacetime sym-
metry in the 1/4 BPS case, while it is fixed by the remaining conformal symmetry in the
1/2 BPS case (d~2 behavior).

In the expectation value calculation we only consider the “flat” surface operator. It
preserves some (Q supersymmetry, and the trivial expectation value is a consequent of this
supersymmetry. It will be interesting to consider the curved 1/4 surface operator and
calculate the anomaly similar to ones considered in [[9—RJ] in 6-dimensional CFT.

In the calculation of the correlation function with chiral primary operators in the
gravity side, we somehow get the positive power expansion in A. This is because in our
case (3 can be large and the actual expansion parameter is A\/32. This situation is quite
similar to the plane wave limit [[7] in which the R-charge J is large and \/.J? becomes the
expansion parameter. It will be very interesting to calculate the next-to-leading order in
the Yang-Mills theory side and see if it agrees with the result of the gravity side.

In the result (B.30), the next-to-leading term vanishes when A = |k|. The same thing
happens in the 1/2 BPS case [I0]. Actually in the 1/2 BPS case it is observed that the
power series terminates at a finite order for every chiral primary operator. It is not clear
whether the same thing happens in 1/4 BPS case. It will be interesting to see if this power
series terminates at a finite order.

To consider the operator spectrum in 1/4 (or less BPS) surface operator as done in
is also an interesting problem. Actually the surface operator treated here preserves some
supersymmetry, the index considered in [BJ—Bg] may have some interesting property.

One can also consider the correlation function with other kinds of operators, for ex-
ample, Wilson loops. The holographic dual of the Wilson loops has various descriptions:
fundamental string probe, D3-brane probe, D5-brane probe and bubbling geometry [B9-
). It will be an interesting problem to calculate the correlation function with the Wilson
loop using these descriptions.

In this paper, we only use probe D3-branes to describe the gravity dual of the less
BPS surface operators. It will be a challenging problem to include the back reaction and
construct the supergravity solution for these less BPS surface operators. There are several
works on less BPS bubbling geometry [i-Fg. One may find the solution of 1/4 BPS
surface operator in these backgrounds, or doubly Wick rotated ones.

Finally one can also consider the surface operators in 4-dimensional N' = 1 super-
conformal field theory and their gravity dual in the type IIB string theory on AdSsx (Sasaki-
Einstein). In the CFT side, the surface operator can be considered by imposing boundary
condition for the complex scalar fields in the chiral superfield. In the gravity side, it will
correspond to some configuration of D3-branes. This configuration is described by a 6-
dimensional homogeneous holomorphic submanifold in C%?x (Calabi-Yau 3-fold cone) in
12-dimensional picture.
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A. Conventions for Gauge theory
The action of N' =4 SYM on 4 dimensions can be written as ' =1 SYM in 10 dimensions:
S = %/d‘lxﬂ BFMNFMN —pTM Dy (A.1)
g

where M, N =0,1,---,9 , '™ is the gamma matrix in 10 dimensions. As we consider the
theory in 4 dimensions, for M = 4,5,--- ,9 , Oy = 0 and the gauge fields Aj; become six
real scalars ¢1,- - ¢g. We define three complex scalars as follows:

We define complex gamma matrices as follows:

{7,4 = F2A—2_|_ZT2A—1,

) A3
FA = T24°2 424l (A=1,2,---,5). (4-3)

The supersymmetry and super-conformal symmetry transformation are given as
1 )
S = <§FWP’“’ + Dy T — 5l @]P”) e(z) — 20T e, (A.4)
(5AM = — Z'IEFMG(I'),
where
e(x) = eg + xHTHeq,

for 16 real components constant Majorana-Weyl spinors ¢;, i = 0, 1.

Conventions for the complex coordinates are

2= izt 22 =2%+ i,

1
- 1
ds* = dz'dz' + d2?dz* = 2, pdz"dZ0, nup = <(2) l) |
2

o :i_l 0 - 0 1:i—1 0 +1 0
m = Hzm 9 Hp2m—2 Hx2m—1 |’ m = Hzm 9 Hp2m—2 Hx2m—1 |’

We define the measure as

dztdzt = d?2t = 2da%dat = 2ridridoq, dz2dz% = d22% = 2da?da® = 2rodridfy.  (A.5)
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B. Kappa symmetry projection

I" can be defined as follows for a D3 brane without electro-magnetic flux:

1 OXMo gx My g x M2 g xMs

_ A A A A:
T o detGFAOAlAZASEM%EMllEMzEMZ 650 851 852 653 (B-l)
1 o OX Mo gx M X M2 §x Ms
DT, Ta,Ta, BB gl pis (B.2)

T/ detG 4l MOEM MMy e pgr ogr g

where G is the induced metric on the world volume, &* world-volume coordinate, X
space-time coordinates, and A; flat directions. We choose a convention €123 = 1. If we
can set £0 =¢,

1 A Ay As OX MO X M2 g X Ms
—— Tl A, a4, Erf ERE B .
VvV det Gspace B agl 852 853

For the type IIB theory, the number of preserved supersymmetries by the Dp-brane is

(B.3)

the number of Killing spinors satisfying

p+1

I'K™= Ie =c¢,
where Ie = ie and Ke = €*. For the D3-brane, the condition becomes

il'e =e. (B.4)

C. Conventions for 12-dimensional space

Let us consider R%* x R% with coordinates (X1, X% X1 ... X4 Y1 ... Y%). We define
complex coordinates as

ZA =XM1 ix%4 0 (4=0,1,2),

WA =y2A-1 Ly (4=1,2,3).

The 12-dimensional metric is

2 3
dsty = —dz°dZ° + Y dz*dz* + " dwAdw
A=1 A=1
:2nABdZAdZB7 (A7B:071727"' 75)7

where (24,25, 2%) = (W', W2 W3) in the second line.
Define the complex gamma matrices as:
7A EF2A—1 + iF2A,

_ C.1
A =024t 24 (4=0,---,5), (©1)

where I'4 are 12-dimensional gamma matrices not to be confused with 10 dimensional ones
in (A-3). 74 satisfy ) )
(v 2P =2
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Gamma matrices with a lower index are defined by:
ya=napr”s va=nap”

We define

YiB =VaB = 5 (vave —YBVA) -

N =

A useful identity is:

YABYeD = VepVap t 2nipYee t 2NpcYip-

D. The gravity dual of the half BPS surface operator

D.1 The half BPS D3-brane configuration in 12 dimensions
We consider a 6-dimensional hyperspace defined by holomorphic functions
f(ztwh =0, wr=o0, W3=0o,

where f(Z',W') = f(Z',(2r/v/A)W?') is a homogeneous function of Z' and W' when
they are assigned weights (+1,—1). The normal vectors can be chosen as

1

B, =——o (2% + Z%0y + c.c) , D.1
iz G Lt ) (D-1)
E,, N (201 — Z°05 + c.c) .

NEava

The tangent vectors can be specified as follows:

E. =\/1+1|721|2 (ZQa(;O + ZOai?) , E:=E, (D.2)
Ey :% (£I-E,, +1-E,,).
Impose the half BPS condition
711€ = 7s3¢€- (D-3)
If multiplied by v1y3 or v37v1, it implies
V1736 = Y3716 = 0.

The condition reduces the left hand side of (B.14) to e , which shows that it preserves half
of the supersymmetries.
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D.2 Correlation function of the half BPS surface operator and a chiral primary
operator

The correlation functions of CPO’s with the half BPS surface operator described by the
D3-brane solution w(z') = k/z! can be found in [[L(]. Here we write down the result in our

notation.
A—k Atk T
0Sp3 —A/ 4 w2 (2’1)@)_ 2 (51) ‘Clalw(zl)P
7% = _9Tnha A A D4
530A’k(<) D3 CA,kC( )I{ d'z LA+2 |W|2 ) ( )

L=Lw(z),z - )= | |lwk)|?+ Z 2™ — ¢

m=1,2

In the leading order of large x, we can replace w(z),Opw(z) with w((),dnw((). We let
¢!'=die'®, ¢? = 0. Integrating out the dz2dz? then using (E.4) leads to

(Oak - Ox) Cakonse —ike! <H>A
. = — 2 e [ — . D.b
(Ox) VA ‘ dy (D-5)

The result of the above integral is compatible with eq. (3.43) in [L0], if we replace x with

sinhug. Since the result in [[[(] needs not assume the limit £ > 1, it deviates at the
sub-leading terms of x from (D.5).

For the next to the leading order of (D.4), we first integrate out dz2dz? then expand
w(z') = w(¢!) + v1ow(¢t) + ---. The integration up to the quadratic order of v = v! is
proportional to

/d%#(l“w Akt (A+1)(—A+1)@+(A+1)(A+2)w+m>’

1 (AR cp K2 |(f

where K = |w(¢)|72 + |v|?. The result is:

(Oak-Os) a2 o A2 k2
S S = R

where Iél/ ?) is the leading order result given in (D-H). This result is consistent with the

result of [[[J.

E. Correlation function with chiral primary operators

E.1 Spherical harmonics

The SO(4) invariant spherical harmonics are [[[0, P4],
YRR, 01) = cary™F ()™, (E.1)

where y®* is related to the hyper-geometric function as follows:

yAF9) = sin*ly Ry (—%(A — k), 2+ %(A + |k[), 1 + | k|; sin? 19> .
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Ak .
CZ-””’Z-A is defined as

CAk g gia = YRR, 6)), (E.2)

U1, 50A

where z° are parameterized by the coordinates of S° as follows:

z' = sindcosby, x°=sindsinb;,

' = ©Q;cos?, (i=3,4,5,6), for Z@f = 1.
i

We normalize ca j in (E.J) such that

3

YAk Yy Ak §ALA2 gk1,k2
/35( ) 281 A+ 1)(A+2) ’

or equivalently,

s

z 27
2 2 3 : *Al,kl Az,kQ — ALAZ k17k2
27 /0 dﬁ/o df cos® 9 sin 9Y (9,60)Y (9,61) 2A_1(A+1)(A+2)5 AR

We define Cx 1, as
YAk = g,el) = Cp e (E.3)

E.2 Some useful formulas

For constant y, the following holds:

1 wP21(=D/2 + «)
D — D—2« E4
foo s M Y (4
/ de xaxb — ab 7TD/2F(_D/2 -1+ Oé) yD+2—2a (E 5)
ro (22 +y?)? 2I'(a) ' '
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